Indian Statistical Institute, Bangalore

B. Math (Hons.) First Year

First Semester - Linear Algebra I
Semestral Exam
Date: 06th December 2022
Maximum marks: 50
Duration: 3 hours

## Answer any five, each question carries 10 marks

1. (i) Prove that a linearly independent subset is contained in a basis (Marks: 5).
(ii) Find a complementary subspace of $W=\left\{v \in \mathbb{R}^{n} \mid \sum i v_{i}=0\right\}$.
2. (i) $r_{0}(A)=r_{0}\left(A^{2}\right)$ if and only if $C(A) \cap N(A)=\{0\}$.
(ii) Prove that $N\left(A A^{*}\right)=N\left(A^{*}\right)$ and $r_{0}\left(A A^{*}\right)=r_{0}(A)$ (Marks: 5).
3. (i) Let $A$ and $B$ be of order $n \times n$. Prove that $r_{0}(A B) \geq r_{0}(A)+r_{0}(B)-n$.
(ii) Prove that $A_{1} A_{2} \cdots A_{N}=0$ implies $\sum \operatorname{dim}\left(N\left(A_{i}\right)\right) \geq n$ where $A_{i}$ are $n \times n$ matrices (Marks: 5)..
4. (i) For $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 2 & 3 & 0\end{array}\right)$, find all $B$ such that $A B=I$, using g-inverse of $A$.
(ii) Prove that all g-inverses of $A$ are of the form $A^{g}+U-A^{g} A U A A^{g}$ where $A^{g}$ is a given g-inverse of $A$ (Marks: 5).
5. (i) Prove that $A\left(A^{*} A\right)^{g} A^{*}$ is hermitian and invariant for any g-inverse of $A A^{*}$.
(ii) Find all g-inverses of $A=\left(\begin{array}{llll}1 & 3 & 4 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 2\end{array}\right)$ of rank 3 (Marks: 5).
6. (i) Prove that a reflexive g-inverse $A^{g}$ of $A$ such that $A A^{g}$ and $A^{g} A$ are hermitian is unique (Marks 5).
(ii) Prove that pivot columns are independent and their span is the range.
7. (i) For any matrix $A$, prove that there is a permutation matrix $P$ such that $P A=L U$ where $L$ and $U$ are lower and upper triangular matrices.
(ii) Can $P$ in (i) be identity matrix always? Justify your answer (Marks: 2).
(iii) For $A=\left(\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 3 \\ -6 & -1 & 2\end{array}\right)$, can $A=L U$ where $L$ and $U$ are lower and upper triangular matrices (Marks: 3).
